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Abstract

In this paper we prove three conjectures of Revers on Lagrange interpolation for f;(z) =

7|, 2>0, at equidistant nodes. In particular, we describe the rate of divergence of the
Lagrange interpolants Ly/( f;, ) for 0<|¢| <1, and discuss their convergence at z = 0. We also

establish an asymptotic relation for max, <] |t/* = Ly (f;,1)|. The proofs are based on strong

asymptotics for |f|* — Ly (f;,1), 0<|t|<1.
© 2003 Published by Elsevier Science (USA).
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1. Introduction

Let 2y be the set of all algebraic polynomials of degree at most N, and let
Ly(f,-)eZ?y be the Lagrange interpolation polynomial to a continuous function f
on [—1, 1] associated with the equidistant nodes

iy =—-14+2j/N, j=0,1,...,.N, N=12,.... (1.1)

The limit behavior of Ly(f;,), where f;(r) = |t|',2>0,re(—1,1), and other
related problems have attracted much attention of several generations of
mathematicians (see [1-5,8,11-18]). The story begins, like many others in
approximation theory, with Bernstein in 1916. Searching for an ‘‘clementary
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example” of a function whose Lagrange interpolation polynomials diverge every-
where, he outlined in [1] (see also the reprinted version [2]) the proof of the following
statement: the sequence of Lagrange interpolation polynomials to |¢] at nodes (1.1)
diverges “at any interval” of [—1, 1]. In fact, he proved only the estimate

Lo fi, 1) ="/ (81%), (12)

where ¢ is a midpoint between two consecutive nodes. The detailed proof of the
relation
limsup |[Ly(f3,0)] = o0, 0<]f|<], (1.3)
N—- o
for 2 =1 can be found in [13, pp. 30-35].

In his paper, Bernstein did not discuss the behavior of Ly(fi,0) as N— oo,
probably because 0 is a node for all even N >0. The asymptotic formula

Jim - Ly(f1,0) =0 (1.4)

was established in 1939 by Berman in his student term paper (see [13, pp. 34, 35]).

Much work has been done in the 1990s and 2000 to extend relations (1.3) and (1.4)
to 2#1 and to find the asymptotic behavior of Ly(f;,1) — |¢|* for te(—1,1). In
particular, Revers [16] showed that (1.3) holds true for A€ (0,1) and established in
[17] the surprising formula

A—1

: % . _ AR Cy
N:2}'tlzlllaoc N*Ly(f2,0) =2(2/7) s1n(n/1/2)/0 =T dy, (1.5)

where 1€ (0, 1].

Inequality (1.2) shows that the rate of divergence of the sequence {Ly(fi,7)}y_;
depends on the location of 7 in [—1, 1]. Byrne et al. [5] amplified (1.2) by proving the
following nth root asymptotic relation for 0<|f|<1 and A = 1:

limsup N~'og| |7 — Ly (f5, 1) = (1/2)((1 + )log(1 + ¢)
N—-

+ (1= nlog(1 — 7). (1.6)

The extension of (1.6) to A = 3 was given in [15].

Li and Mohapatra [11] showed that (1.6) holds true for A = 1 and almost every
te[—1,1] with limsupy_ , replaced by limy_p 11—, where {pi},~, is the
increasing sequence of all positive prime numbers.

Recently Revers, motivated by numerical calculations [16,17] and by aesthetic
reasons [15], conjectured that relations (1.3), (1.5), and (1.6) remain valid for all
relevant 1> 0.

In this paper we prove these conjectures (Theorem 1, Corollaries 1 and 2).
Moreover, we establish strong asymptotics for |f|* — Ly(f;, 1), where re(—1,1)
(Theorems 2, 4 and 5). As corollaries, we strengthen and generalize the result of Li
and Mohapatra (Theorem 3) and obtain an asymptotic relation for max, | |t|i —
Ly(f;,1)| (Theorem 6).
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Notation. Throughout the paper 4 is a real number, 1#£0,2, ..., and C denotes a
positive constant independent of M,N,n,t,y,e. The same symbol does not
necessarily denote the same constant in different occurrences. We also make use

of the following functions for re[—1, 1] and constants for 1> 0:

ox(1) = V1= 2((1+0"(1 =™V,

otherwise,

)

) {cosﬁ, t=p/m,(p,m)=1,mis odd, |p|eN,
s(1) =

otherwise,

) {cosz’rfn, t=p/m,(p,m)=1,pis odd, |m|eN,
c(t) =

an= [ Fsa=roY ek’

Y -y
ey +e =

ey —e Vv

Cy(4) = /030 »* dy =T(\+ 1)2 (2k + 1)—(A+1).

k=0

2. Statement of main results

We first discuss the asymptotic behavior of Ly(f;,0), NeN. Since L,,(f;,0) =0
for />0 and all ne N, here we study the asymptotic behavior of L,,_1(f;,0), neN.

Theorem 1. [f 1>0, then

lim N*Ly(f3,0) = 2(2/n)* sin(n2/2) C,(2).

N=2n—1-

(2.1)

Next we establish the rate of divergence of the sequence ||¢|* — Ly(f;, )| for

0<|f|<1.
Theorem 2. Let te(—1,0)u(0,1) be a fixed point.
(@) If o> — 2, then
limsup ((aN/2)"/oy(0) | = Ly )
= (4/n)|sin(nA/2)|Ci (2 + 2)t2c(2).
(b) If 2>0, then
lim sup ((xN/2)" /o (0) | 1" = Ly (/3 1))]

N=2n— o
= (4/m)|sin(n2/2)| G ()| s(0).

As immediate consequences of Theorem 2, we extend (1.6) and(1.3) to 4>0.
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Corollary 1. If 0<|t| <1 and A>0, then (1.6) holds.

Corollary 2. If 2.>0, then (1.3) is valid.

227

Next we show that (1.6) holds for almost all 7e[—1, 1] with lim supy_, ., replaced

by limy_, o

Theorem 3. For A>0 and almost all te[—1,1],

]\}Elloo N~ log| 1] — Ly (fi, )] = (1/2)((1 + )log(1 4 1) + (1 — £)log(1 — 7)).

The following strong asymptotics play a crucial role in the proofs of Theorems 1,

2, and 3 and are interesting in themselves.

Theorem 4. (a) If 0<|t| <1, 2>0, and N =2n — 1,neN, then
1 = Ly (f3s1) = — (4/m)sin(mA/2) (N /2) ™ cos(xNt/2)p (1)
0 A+1
x / Y
0 ((eNt/2)" +y?)(e¥ +e7)

where |oy 1 (1)] < C(N13 + (N(1—2)7h.
(b) If 0<t] <1, 1>0, and N = 2n, neN, then

1] — Ly (f5, 1) = (4/7)sin(n2/2)(xN /2) e sin(nNt/2) g (1)
* 37
<) N 4 e — ey P+ awa(0),

where |oy »(1)|<SC(NV3 + (N(1—=2)7).
© Ifo<lt]<1, A> —2,and N =2n— 1, NeN, then

i = L(fi0) = = (@4/m)sin(m/2)C1 (3 + (N /2) 22
x cos(nNt/2)on(6)(1 + an3(2)),

where oy 3(1)| <SC(N'3(1 + (N2) ™) + (N(1 = 2))7h.
(d) Ifo<jtj<1, A>0, and N = 2n, NeN, then

1" — Ly(f3,1) = (4/m)sin(n2/2) Co(2) (nN /2)" V1
x sin(nNt/2)pn (1) (1 + an 4(2)),

where |y 4(1)| SC(N"VA(1+ (NE2) ™) + (N(1—22)7").

dy(1 4 on,1(7)),

(2.4)

(2.5)

(2.6)

(2.7)

To prove Theorem 4, we apply Bernstein’s approach, developed in 1937 for
interpolation with the Chebyshev nodes [3] (see also [8,20]), to equidistant

interpolation.
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Theorem 4 provides the uniform asymptotics for \l|;“ — Ly(f;,¢t) in the interval
[t|<1 —ay/N, where 0<oy <N and limy_, ,, oy = oo0. The asymptotic formulae for

[t/ — Ly(f3,1) at t = + (1 — ay/N), where limy_, ,, oy = 0, are given below.
Theorem 5. Let |t| =1 — oy /N, where limy _, o, oy = 0.
(@) If N=2n—1,neN, and .> — 2, then for N— o0,
1" = Ly (fi,1) = (= 1) sin(n2/2) C1 (24 2)(wN /2) "
X oy N~/22NH (1 4 0(1)). (2.8)
(b) If N =2n,neN, and >0, then for N — oo,
" = Ly(f3, 1) = (=) sin(n2/2) Co(2) (N 2) "+
x oy N~/22NHL(] 4 o(1). (2.9)

Finally, we use Theorems 4 and 5 to establish an asymptotic relation for the
approximation error.
Theorem 6. If 1>0, then
Ay, = max| |t\/1 — Ly(f:,1)]

lf]<1

[ ANERRN Nlog N(1+0(1)), N=2n—1-0, 210)
| A,N-F3228 Jlog N(1 + 0(1)), N =2n— oo, ‘
where
Ay = (4/e)[sin(mA/2)|Cy (4 + 2)(rm/2)~*3/2), (2.11)
Ay = (4/e)[sin(mA/2)|Ca(2) (m/2)~H3/2). (2.12)

Remark 1. Theorem 2 implies that for A>0 and 0<|¢| <1,
limsup |Ly(f;,t)| = limsup |Ly(f3,?)| = o0.
N

N=2n— w0 =Zn— 0

This solves the problem on the behavior of L, (f;,t) as n— oo for 1e(0, 1],
posed in [16].

Remark 2. We note that the constant on the right-hand side of (2.1) is surprisingly
related to the constant in Lagrange interpolation to f; with the Chebyshev nodes (see
[3.8.14]).

lim N*max | |1 — Ly(f;, 1) = (4/7)|sin(zA/2)|C1(4).

N—> lf1<1

Revers [17] believes that the constant in (2.1) is related to the Bernstein constant
B; =limy_, o N*infpcp, max < |f;(¢) — P(2)].
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Remark 3. Theorem 6 shows that the growth of Ay ; is N**1/2 slower than the order
of the magnitude of the Lebesgue constant ||Ly|| whose asymptotic behavior

|[Ly|[~2M"!/(eN(log N +7)) as N— o,

was established by Schonhage [19]. Here y = 0.577... denotes Euler’s constant.

Remark 4. The exponential factor in Theorems 2 and 4 can be expressed through the
potential corresponding to the uniform distribution on [—1, 1] (see [12]):

1

(14 01— 0=y = exp((N/2> /

log|t — y| dy+N>.

Remark 5. Theorems 2-6 are new even for 4 = 1.

3. Proof of Theorem 4

The proof follows Lemma 1 in [8] (see also [3, pp. 92, 98-100]), though the
equidistant nodes require more detailed analysis than the Chebyshev ones.

To prove the theorem, we need two lemmas. The proof of the first one is outlined
in [3, p. 92], and a special case of the lemma is given in [8]. Here, for the convenience
of the reader, we give a proof of the following result.

Lemma 1. Let P, €2, be the Lagrange interpolation polynomial to (1 — x)* on
[—1,1] at the nodes {x;}{—,, —1<x1<, - <xu<1, and let Qu(x) = []0_, (x — x).
@) If xu<1 and m>s> — 1, then for xe[—1,1],

(1 —x)" = P,_1(x) = —(1/n) sin ms Qm(x)/lOC %dz. (3.1)
(b) If xpy = 1 and m>s>0, then for xe[—1,1],
0 7 s—1
(1 —x)"—=P,_1(x)=(1/n)sinms (1 — x)Qm,l(x)/1 %dz. (3.2)

Proof. We first prove statement (a) of the lemma. Let P,_;,€2,_1 be the
interpolation polynomial to (a —x)* on [—1,1] at {x;};_,, where a>1. By the
Hermite error formula for Lagrange interpolation,

0w (a2
"2 0, G090,

(3.3)

(a—x) — m—1,a(X)

where (a—z)' takes positive values for real z<a,s> —1. Here, Dy, =
CyuC,uD,uD_, is a contour in C, oriented in a positive sense, where M and
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e, M>a>(a—1)/2>¢>0, are fixed numbers and

Cy, ={z:]z] = M,arcsin(¢/ M) <|arg z| <7},

C,={z:|z—al =¢, n/2<]|argz|<n},

Dy, ={z=x+tic:a<x<VM?—¢}.

Since the function A(z) = % satisfies the conditions
max |h(z)| <K CM*™ ' max |h(z)| < Ce’,
zeCyy, ze(C
we have
lim lim h(z)dz = lim lim h(z)dz =0. (3.4)
M- -0 Chte M- =0 Jo

Next, by the limit relation

lin’(l) (a— (x+ie)’ — (a— (x —ig))' = 2isinws(x —a)’, x=a,
we obtain
Mlim lirr(l)(/ h(z)dz —|—/ h(z) dz> = —2isin ns/ h(z) dz. (3.5)
— 00 & D,; e a

Then (3.3)—(3.5) yield the integral representation

(@ —x)" — Py_14(x) = (1/7)sin s Op(x) /OC (z—a)
- —I'm—1a = m T N~ TN
« (2=x)0n(2)
for x,, <1. Finally, making the substitution z = au in this integral and letting a — 1+
in (3.6), we obtain (3.1), by the Lebesgue-dominated convergence theorem.
Statement (b) can be proved similarly. [

dz (3.6)

In the next lemma we study the asymptotic behavior of some polynomials.

Lemma 2. (a) If neN and |y|<n'/?, then

n 2 -1

OIQ+2Q21£D — (coshy) (14 B (). (3.7)
k=1 ” -
n 2 -1

OIQ+;%§> = y(sinh )™ (14 ,,00), (38)
k=1

where 0</3,,},(y)<Cn’1/3, j=12
(b) If neN and |t| <1, then

n m—1)\°
HQ—Qh4Q>:wmwhwmmhmm+mm» (39)

k=1
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f[(l - (Zr)z) = ST )0+ Bal0), (3.10)

mn

where |, (1) < C(n(1 — ANt =34

Proof. (a) Using the product formulae for cosh y and sinh y [9, Section 1.431], we
obtain

B n 4y2 -1
1+ B,1(y) =coshy (;H (1 + —n2(2k - 1)2>>

_ T 4

-AL (1 Tk 1>2>

<exp| (4% /n2 2% — 1) <exp(CyA/n) <1+ Cn '3
p{ (4y p(Cy :
k=n+1

-1
n 2
1+ﬁn2( ) —Smhy(y (14—2—](2))
k=1

o yz /
_ ~1/3
= Il (1+ 2k2><1—|—Cn .

k=n+1

These inequalities yield (3.7) and (3.8).

(b) We first note that the asymptotic (1 + y/n)" = ¢”(1 + O(1/n)) holds uniformly
in every interval [—C, C], where C is a fixed constant. Then using [7, Section 1.2] and
taking account of the asymptotic formula for the gamma function [7, Section 1.18],
we obtain after easy manipulations

n(2n— 1)\ ¢ 2n—1\?
(Cosf) g (1 <2k—1t) )
_ T+ +59T (1 -1 +439
( (n+1/2))°
(n(l +1)+ ) n(1+0)+ (1—1)/2(n(1 —1) _‘_%)n(l—t)-r(lﬂ)/z 1
n(n+1/2"V1 -1 <1+0( (1—12))>

B 87[2”(1 + t)n(1+t)+(lfl)/2(1 . t)n(lt)+(l+t)/2(1 . 0( 1 ))
(n+1/2)"V1 -7 n(l— 1)

= @21 (1) (1 * 0(11(171t2)>>
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Thus (3.9) follows. Similarly by [7, Sections 1.2 and 1.18],
n n 2
(% )
(-G

_ Sin(ﬂfl’ll‘)(n!)fzr(n(l + t) + ])F(n(l — l) + 1)
1

nnt
__sin(znt) (n(1 +1) + D" (1 = 1) 4 1) 1
B PV e (1+ (i)

SRV (1 + O(ﬁ»

This yields (3.10). O

Proof of Theorem 4. (a) and (c): Let re[—1,1],A> —2,and N =2n—1,NeN. We
first consider the following nodes:

Xpii1 =1=2(Qk=1)/2n—=1))* k=1,...,n.
Then x,<1 and by Lemma 1(a) for m=n>s> — 1,

(1 =x)" = Py (x)
—(1/m)sin nsﬁ(x— 1+ 2(?;: D )

k=1

« z—1
/1 (z =) [k (1(2—>1 +2(G35) )dz
Making the substitution z = 1 + 2(%)2 in this integral, we arrive at the identity
(1 =x)" = Pyi(x)
— —(2%/m)sin s (x(2n — 1)/2)" >

XH(X”zﬁk—l))

2541

* y
<), (= x+ 22 ) T, (1 + 2

2n1 2(2k— 1))

(2n—1)"
2" [Ty 2k — 1)

dy. (3.11)

Next we make the substitutions x = 1 — 272 and s = 2/2 in (3.11) and note that

Lop 1(fo,t) =27P, (1 = 2¢%), te[-1,1]. (3.12)
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Thus (3.11) and (3.12) yield
1" = Loui(f3,1)
= —(2/m)sin(nd/2)(n(2n — 1)/2)7(“2)

n n—1 2 o) y/H—l
il @) f _—
ﬁ( %=1 ) (e D T + o)

y
n(2n—1)
(3.13)

To prove statements (a) and (c), we need to find the asymptotic behavior of the
integral I,(¢) on the right-hand side of (3.13). Splitting 7,(¢) into two integrals, we
obtain

n'/3 0
1,1(t):/0 +/nm = 1,1(t) + Lx(1). (3.14)

Note that for 0<|t|<1, A> — 2, and n=m = [(1+ 7)/2] + 1, where [x] denotes the
integer part of x, we have
0 A—1
L2 (1)< Cn? / J dy< C>U=2mB < o3, (3.15)

n 4y?
o Tl (U + )

Hence for €0, 1) and 1>0,

0
In.,Z(t)écnilﬁ/ 2 2yy 2 ,
0 (l + (m) )(ey + 6_})

Further by (3.7), we have for t€[0,1) and 1>0,

A+1

dy. (3.16)

13 n'/3 yl+l
L (6) =2(1 + O(n™ ))/ | dy
o (24 (%)2)(@’ te)
13 0 y/i+1
—2(1 4 O ))/ , dy (3.17)
0 (24 Gr) )@ +e)
Combining (3.13) with (3.9), (3.14), (3.16) and (3.17), we then obtain (2.4).
If 0<|f]<1, A> — 2, then (3.15) implies
La()<Cn™'3C (4 +2)/7. (3.18)
Next by (3.7),
2 1/3 " )’Hl
Li(0) = (2/2)(1 + 0" /0 L av-w)), (3.19)
where
PRVl y”l( (22y ]))2
o, (1) = / n dy<Cn*3C (A +2)/2. (3.20)
0 (ZZ + (n(22,,y_|))2)(ey +e7)



234 M.1. Ganzburg | Journal of Approximation Theory 122 (2003) 224-240

It follows from (3.14), (3.18)—(3.20) that
L(t) = 2C (2 +2)/)(1 4 (1)), (3.21)

where [o(1)| < Cn™' 31 + (n?)7").
Thus (3.9), (3.13) and (3.21) yield (2.6). This establishes statements (a) and (c).
(b) and (d). The proof is similar to that of statements (a) and (c). Let
e[-1,1], 2>0, and N =2n,neN. Then the nodes x, i1 = 1—2(k/n)*, k =
0,1, ...,n, satisfy the conditions of Lemma 1(b) for m =n+ 1>s>0, and by (3.2),

n

(1 =x)" = Py(x) =(1/m)sin s (1 — x) [ [(x = 1 + 2(k/n)*)

k=1

/OO (z—1)""

X - 5o dz

1 (2= ) [Teai (2 = T+ 2(k/n)7)

Making the substitutions z = 1 + 2(y/(nn))*,x = 1 — 242, and s = //2, and taking
account of the identity

Lon(fi, 1) = 27°P,(1 — 2¢%),
we arrive at

1 = Laa f 1) = (2 fm)sin(/2) ey [ [ (1 = (u1/00?)

k=1

[5%) ZZy).fl
X / TN 7 dy.
o (4G Lo (T+20)
Next using (3.8), we can find the asymptotic behavior of the integral I,(¢) on the
right-hand side of this identity similarly to (3.14), (3.16) and (3.17) if 0<|¢f|<1 and

similarly to (3.18), (3.19) and (3.21) if 0<|¢|< 1. Finally by (3.10), we obtain (2.5)
and (2.7). O

4. Proofs of Theorems 1-3, 5 and 6

Proof of Theorem 1. Choosing ¢ = 0 in (2.4), we obtain
Low_1(£3,0) = (4/m)sin(n2/2)(n(2n — 1)/2) *C1(A)(1 + O(n~'/?)).
Hence (2.1) follows. O

Proof of Theorem 2. Asymptotic formulae (2.6) and (2.7) show that strong
asymptotics (2.2) and (2.3) immediately follow from the relations
lim sup |cos(n(2n — 1)t/2)| = c(¢), lim sup |sin(7nnt)| = s(¢), (4.1)
where 0<|z| <.
To prove (4.1), we consider the following cases:
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Case 1: We first suppose that ¢ is irrational. Then the sequences {nz(mod 1)}~
and {(2n — 1)t/2(mod 1)} =, are dense in [0,1] by [6], there exist two increasing

n=1
subsequences {n(7)},~, and {ri(¢)};=, of indices such that

lim |cos(n(2nm, — 1)2/2)] = klim |sin(mrg)| = 1. (4.2)
e

k= o0
Case 2: Now, let

t=p/m, (p,m)=1, |p|leN, meN, 1<|p|<m. (4.3)
If m is even, then for ry(t) == mk + m/2,

[sin(nrit)| = 1, k=1,2,.... (4.4)

Further, if m is odd, then by elementary properties of congruence modulo m [6],
there exists d(1)eN, 1<d,(f)<m — 1, satisfying dip = [m/2] + 1 (mod m). Hence
we have

sup [sin(nnt)| = sup  [sin(ndp/m)| = sin(n([m/2] + 1)/m)
neN 0<d<m—1
=sin(nd,p/m)
T
=cos o (4.5)

Note too that for ri(¢) = mk + d,(¢),
T
i t)| = cosz— k=1,2,....
|sin(7mry)] c085 ) ,2,

Together with (4.2), (4.4) and (4.5) this yields the second relation in (4.1).
Assume now that (4.3) holds and p is even. Then for n(z) = (1 +m(2k — 1)) /2,
|cos(n(2n — 1)t/2)| =1, k=1,2,.... (4.6)

Further, if p is odd, then there exists dx(r)eN, 1<dr(?)<m — 1, satisfying
(2d, — 1)p =2m — 1 (mod 2m). Hence we have

o) - e 2510

sup|cos(n(2n — 1)t/2)| = sup
neN I<d<m—1
2m — 1 T
= = _— 4
cos (n - ) ‘ cos 5 (4.7)
Note too that for ny(z) .= mk + dy(¢),
lcos(n(2m — 1)¢/2)| = cos % k=12, ... (4.8)

Then (4.2), (4.6), (4.7) and (4.8) yield the first relation in (4.1). This proves the
theorem. [
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Proof of Theorem 5. We first note that for |¢| =1 — f§,/n, where lim,_, , 5, = 0, the
following asymptotics hold as n— oo:

. 2n—1)\?
N (ki
,H( <2k— 1l> )
= cos(n(2n — 1)t/2)r(n(l +o+ (- t)/2)F(n(12— n+(1+1/2)
(T(n+1/2))

_ ntlg Tfﬁ,,( ) F(zn — B, + [3,,/(211)) o

=(-1) ( P > Toi 1) (14 0(1))

_ D" w2 = Byt B ) e 12

20 = B, + B,/ (2n) e2r=bi+b./ 20 (27) (n + 1/2)2n+1 {

(*l)n+1€ﬂ:1/2ﬁ D2n—1,2n

_ n (1 +o(1) = (=1 n+1n1/2 ,1n7(1/2+ﬁ”>22n71 1+ o(1)).
{1+ ol1) = (1 (1+o(1)

Together with (3.13) and (3.21) this yields for N =2n — 1 - o0,

|Z|)~ - L2nfl(fi, t)
—(2/n)sin(nA/2)(n(2n — 1)/2) (2+2)

1 2
x H ( (3e=1) ) (2C1(2+2)/7) (1 +5(1)

:(_1)<N+1>/251n(m/2)c1( +2)(nN /2)"F 2y N=2aNH(1 4 o(1)).

Thus (2.8) follows. Similarly, for |¢| = | — ,/n with lim,, o, , = 0, we obtain the
following asymptotics as n— o0

ﬁ<1 - (% z)z) _ SN 201 4 1)+ )T — 1) + 1)

=l nnt

_(_ n+ISin(nﬁn) F(2n — ﬁn + 1)

=(=1 o () (I+o(1))

_ DM B2 = B+ DT
(2n— B, + 1)1/2e2n—ﬂ,,+l(2n) n2n+l

_ (_1)n+1n71/2ﬁnn7(3/2+ﬁ”) 22)1(1 + 0(1))

Now, (2.9) is a consequence of the corresponding asymptotics for
" = Loa(fin0). D

Proof of Theorem 6. Let N =2n — | and let rye(—1, 1) satisfy the equality

Ay, = |ltn] = Ly (f3, tn)]. (4.9)
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We first prove that
lim  N(1-24)=0. (4.10)

N=2n—1- o
Note that for any increasing sequence {Ny},—, of positive odd numbers, the lower
estimate

A, = CN,; W20 f10g Ny (4.11)

holds for all large enough Nj. This follows from (2.8) if we set ay = 1/log N.
Next, we have for large enough odd N that |ty|€[1/2, 1]. Indeed, if there exists a
sequence {7y, },-, satisfying |y, |<1/2, k= 1,2, ..., then it follows from (2.4) and

the monotonicity of ¥ (¢) = ((1+ 1) (1 — )'~")¥/* on the interval [0, 1) that

Ni
Ay SCNYy (1/2) < CONG (\/3\/5/2> SCNA(114M ) k=1,2,... .

This is a contradiction to (4.11).
Further, we need the following property of ¢: for each B> 0 there exists Ny such
that for N > Ny, ¢y is increasing in [0, 1 — B/N]. Indeed,

(ox (1) = ((1+ 01 =)' <2z +N(1 - tz)log%),

and for 0<#2<1—1/N,

1+1
—2t+N(1 — t2)10g1—+z>2t(N(1 — ) —1)>0.
If 1 —1/N<£<(1 — B/N)?, then for all large N

1+1¢
—2t+ N(1 — £*)log . +

> —2t+ (2B — B*/N)log N >0.

This yields the property.
To prove (4.10), we assume that there exists an increasing sequence Ny = 2 — 1,
such that |zy,|>1/2, k= 1,2, ..., and infr ey Ni(1 — £3,) = A>0.
Then 1/2<|ty,|<1 — A/(2Ny), and it follows from (2.6) and the monotonicity of
@y, in [0,1 — A/(2Ny)] that for all large odd Ny,
Az OO+ an s ()N P oy, (1n) < CN gy (1 4/ (2N). - (412)
Note that oy, 3(2y,) in (4.12) is uniformly bounded because Ny (1 — 13, ) >4 >0. Now
using the inequality
(/)Nk(l _y)S\/Esz y(yNk+1)/27 y€(071)7
for y = A/(2Ny), we obtain from (4.12)
Ay )<CNk—(J.+5/2+A/4)2Nk
kst S .
Since A4 >0, this inequality is a contradiction to (4.11). Thus (4.10) follows.
Furthermore, setting yy = N(1 — %), we have 7y =1 —ay/N, where oy =
N(1—+/1—=yy/N). Then by (4.10), limy—o—1-o oy =limy—s,—i1- o 7y =0.
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Applying now Theorem 5(a) for ¢t = 1, we obtain

. AN A
lim
N=2n—1- o OCNN (i+5/2+a1y /2)

= 2|sin(n2/2)|C (A 4 2)(x/2)"“T2 . (4.13)

Since for N> 1,

Ay N~ “‘”/2<ma3( yN™% = (2/log N)N~'/1°¢ N — (2 /¢)(log N)™
y=

we deduce from (4.13)

AN,
lim sup ’

<A, 4.14
Neantos oo N-CH/22N Jlog N = (4.14)

where A; is defined by (2.11).
On the other hand, choosing ¢}, =1 — (2N log N)™" and using (2.8) for oy =
(2log N)~', we obtain

Av.; el = ()]
>
v SN log N - ven . N-GS22N flog N

= A (4.15)

Thus (4.14) and (4.15) yield (2.10) for N = 2n — 1. Similarly, using (2.5), (2.7),
(2.9), and (2.12), we arrive at (2.10) for N =2n. O

Proof of Theorem 3. We first note that the theorem follows from statements (c) and
(d) of Theorem 4 if we prove that the limit relations

lim [cos(n(2n —1)1/2)|/® Y =1, (4.16)
lim [sin(znr)|/® = 1 (4.17)
n— oo

hold for a.e. te[—1,1].

To prove (4.16) and (4.17), we need the following fact from the metrical theory of
diophantine approximation [10]: for a.e. re[—1, 1] the set of all solutions (k, n) to the
inequality |t — k/n|<n~3 is finite.

This statement implies that for a.e. £e[—1, 1] there exists ny(#) such that for every
rational number k/n with n>ny(t), the following inequality holds:

nlt —k/n|=n"2. (4.18)

Next, let k = k(7) be a closest integer to nt. Then n|t — k/n|<1/2, and using (4.18)
for a.e. te[—1,1] and n>mny(t), we have

|sin(nnt)| = sin(nn|t — k/n|)=2n|t — k/n|=2n">

Hence (4.17) follows.
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Similarly, if k; = k;(¢) is the closest odd integer to (2n — 1)z, then (2n — 1)|t —
ki1/(2n —1)|<1. Using (4.18) for a.e. te[—1, 1] and 2n — 1>ny(¢), we obtain

‘COS <n(2n2— 1)1)‘ Ca <7r(2n2— 1)‘t - znki ID

>Q2n—1)|— ki '2(2n 1)~2.

2n — 1

This yields (4.16). [
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